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1. Introduction 
Different types of dynamical systems and stochastic models of brain cancer progressions and 

treatments have already been constructed. They encompasses the invasive diffuse properties of the 

brain cancer and their growth rate. Following the model developed by Bergress and continued by 

James Mussary, [1-4], we complete their results by studying a factional growth model for tumor 

brain cells under the influence of random perturbations. We shall generalize the results in [5]. 

Let (𝜴, 𝓕, 𝓕𝒕, 𝑷) be a filtered probability space and let {𝑾(𝒕), 𝒕 ≥ 𝟎} be a standard Wiener process 

adapted to the filtration (𝓕𝒕, 𝒕 ≥ 𝟎).      

Consider the following fractional stochastic model: 

𝐵(𝑥, 𝑡) = 𝜑(𝑥) +
1

𝛤(𝛼)
∫ (𝑡 − 𝑠)𝛼−1[

𝑡

0

 
𝑎

𝑥2

𝜕

𝜕𝑥
(𝑥2

𝜕𝐵(𝑥, 𝑠)

𝜕𝑥
) + (𝜌 − 𝐾)𝐵(𝑥, 𝑠)]𝑑𝑠 + 

𝜎

𝛤(𝛼)
∫ (𝑡 − 𝑠)𝛼−1𝑡

0
 𝐵(𝑥, 𝑠)𝑑𝑊(𝑠),                                                                                  (1.1)  
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ABSTRACT: In this note, we present a fractional stochastic model for the diffusion of the brain 
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 Where 0 <∝≤ 1, Γ is the gamma function, 𝐵(𝑥, 𝑡) is the cell density at time 𝑡 and radius 𝑥, 𝑎 is the 

diffusion coefficient, expressed as 𝑐𝑚2 per day, 𝐾 is the killing rate of tumor cells, 𝜚𝐵(𝑥, 𝑡) is the 

growth of tumor cells and 𝜎 is a constant, see [6-10]. 

It is assumed that 𝜑 is a given deterministic continuous function defined on an interval [0,L].  

It is assumed also that the stochastic process 𝐵(𝑥, 𝑡) satisfies the boundary conditions: 

𝐵(0, 𝑡) = 𝛽(𝑡), 𝐵(𝐿, 𝑡) = γ(𝑡),  𝑡 ≥ 0,                                                                                                (1.2) 

Where 𝛽, γ are stochastic processes. It is supposed that the stochastic process 𝛾(𝑡) is independent 

of 𝑊(𝑡). It is supposed also that the process 
𝑑𝛾(𝑡)

𝑑𝑡
 is measurable and bounded on the interval 

[0, 𝑇]. 𝑇 > 0. 

In section 2, we shall find exact formula for 𝐵(𝑥, 𝑡) and 𝐸[(𝐵(𝑥, 𝑡)], where 𝐸(𝑋) is the expectation 

of the random variable 𝑋. 

2-Exact formula for Brain cells 

Let us simplify equation (1.1) by the substitution  𝑢(𝑥, 𝑡) = 𝑥𝐵(𝑥, 𝑡) − 𝑥𝛾(𝑡). It is easy to get 

𝑢(𝑥, 𝑡) + 𝑥𝛾(𝑡) = 𝑥𝜑(𝑥)  +
1

Γ(𝛼)
∫ (𝑡 − 𝑠)𝛼−1[𝑎

𝜕2𝑢(𝑥, 𝑠)

𝜕𝑥2

𝑡

0

+ (𝜚 − 𝐾)𝑢(𝑥, 𝑠)]𝑑𝑠 + 

𝜎

𝛤(𝛼)
∫ (𝑡 − 𝑠)𝛼−1𝑢(𝑥, 𝑠)𝑑𝑊(𝑠)

𝑡

0
+

1

Γ(𝛼)
∫ (𝑡 − 𝑠)𝛼−1(𝜚 − Κ)𝑥𝛾(𝑠)𝑑𝑠 +

𝜎

Γ(𝛼)
∫ (𝑡 − 𝑠)𝛼−1𝑥𝛾(𝑠)𝑑𝑊(𝑠)

𝑡

0

𝑡

0
,                                                                                                   

(2.1) 

Notice that 𝑢(0, 𝑡) = 𝑢(𝐿, 𝑡) = 0, 𝑢(𝑥, 0) = 𝑥𝜑(𝑥) − 𝑥𝛾(0). 

We consider first the case when 𝛼 = 1. 

Let 𝑣 be the solution of the stochastic differential equation: 

𝑑𝑣(𝑥, 𝑡) = 𝑎
𝜕2𝑣(𝑥,𝑡)

𝜕𝑥2 𝑑𝑡 + (𝜚 − Κ)𝑣(𝑥, 𝑡)𝑑𝑡 + 𝜎𝑣(𝑥, 𝑡)𝑑𝑊(𝑡) − 𝑥
𝑑𝛾(𝑡)

𝑑𝑡
𝑑𝑡 + 𝜎𝑥𝛾(𝑡)𝑑𝑊(𝑡), (2.2)                                                

Where 𝑣(𝑥, 0) = 𝑥𝜑(𝑥) − 𝑥𝛾(0), 𝑣(0, 𝑡) = 𝑣(𝐿, 𝑡) = 0.                                                               (2.3)                                                                                                     

Consider now the following stochastic differential equations: 

𝑑𝑋1(𝑡) = [
𝜎2

2
𝑋1(𝑡) − (𝜚 − Κ)𝑋1(𝑡)] 𝑑𝑡 − 𝜎𝑋1(𝑡)𝑑𝑊(𝑡),                                                              (2.4) 

𝑑𝑋2(𝑡) = [
𝜎2

2
𝑋2(𝑡) + (𝜚 − Κ)𝑋2(𝑡)] 𝑑𝑡 + 𝜎𝑋2(𝑡)𝑑𝑊(𝑡).                                                             (2.5) 

The solutions of these two stochastic differential equations are given by: 

𝑋1(𝑡) = 𝑒𝑥𝑝[−{𝜎𝑊(𝑡) + (𝜚 − 𝛫)𝑡}], 𝑋2(𝑡) = exp [𝜎𝑊(𝑡) + (𝜚 − 𝛫)𝑡]. 

Set 𝑣1(𝑥, 𝑡) = 𝑋1(𝑡)𝑣(𝑥, 𝑡) and applying the formula of Ito, we get: 

𝑑𝑣1(𝑥, 𝑡) = 𝑋1(𝑡)𝑑𝑣(𝑥, 𝑡) + 𝑣(𝑥, 𝑡)𝑑𝑋1(𝑡) − 𝜎2[𝑣(𝑥, 𝑡) + 𝑥𝛾(𝑡)]𝑋1(𝑡)𝑑𝑡.                                (2.6)              

Substituting from (2.2) and (2.4) into (2.6), we get 

https://icrrd.com/volume-issue/6/2022/3/2
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𝑑𝑣1(𝑥, 𝑡) = [𝑎

𝜕2𝑣1(𝑥, 𝑡)

𝜕𝑥2
−

𝜎2

2
𝑣1(𝑥, 𝑡)] 𝑑𝑡 − [𝑥

𝑑𝛾(𝑡)

𝑑𝑡
+ 𝜎2𝑥𝛾(𝑡)] 𝑋1(𝑡)𝑑𝑡 +  𝜎𝑥𝛾(𝑡)𝑋1(𝑡)𝑑𝑊(𝑡). 

Thus: 

d𝑣∗(𝑥, 𝑡) = 𝑎
𝜕2𝑣∗(𝑥,𝑡)

𝜕𝑥2 𝑑𝑡 − 𝑒
𝜎2

2
𝑡 [𝑥

𝑑𝛾(𝑡)

𝑑𝑡
+ 𝜎2𝑥𝛾(𝑡)] 𝑋1(𝑡)𝑑𝑡 + 𝑒

𝜎2

2
𝑡𝜎𝑥𝛾(𝑡)𝑋1(𝑡)𝑑𝑊(𝑡) ,                  

(2.7) 

Where  𝑣∗(𝑥, 𝑡) = 𝑒
𝜎2

2
𝑡  𝑣1(𝑥, 𝑡).  

Notice that 𝑣∗(𝑥, 𝑡) satisfies the following initial condition and boundary conditions: 

𝑣∗(𝑥, 0) =  𝑥𝜑(𝑥) − 𝑥𝛾(0), 𝑣∗(0, 𝑡) = 𝑣∗(𝐿, 𝑡) = 0.                                                                                   

(2.8) 

Let us solve the stochastic mixed problem (2.7) , (2.8). 

Set  𝑣∗(𝑥, 𝑡) = ∑ 𝑇𝑛(𝑡)𝑠𝑖𝑛
𝑛𝜋𝑥

𝐿
∞
𝑛=1  , where 𝑇𝑛(𝑡) =

2

𝐿
∫ 𝑣∗(𝑥, 𝑡)𝑠𝑖𝑛

𝑛𝜋𝑥

𝐿
𝑑𝑥

𝐿

0
. 

It is easy to get 

𝒅𝑻𝒏(𝒕) = −𝒄𝒏𝑻𝒏(𝒕)𝒅𝒕 + 𝑭𝟏(𝒕)𝒅𝒕 + 𝑭𝟐(𝒕)𝒅𝑾(𝒕), 

Where  𝑭𝟏(𝒕) = (−𝟏)𝒏 𝟐

𝒏𝝅
𝒆

𝝈𝟐

𝟐
𝒕 [

𝒅𝜸(𝒕)

𝒅𝒕
+ 𝝈𝟐𝜸(𝒕)] 𝑿𝟏(𝒕) ,  𝑭𝟐(𝒕) = (−𝟏)𝒏−𝟏 𝟐

𝒏𝝅
𝒆

𝝈𝟐

𝟐
𝒕𝝈𝜸(𝒕)𝑿𝟏(𝒕), 

𝑐𝑛 = 𝒂 (
𝒏𝝅

𝑳
)

𝟐

. Thus 𝑻𝒏(𝒕) is given by: 

𝑻𝒏(𝒕) = 𝒆−𝒄𝒏𝒕𝑻𝒏(𝟎) + ∫ 𝒆−𝒄𝒏(𝒕−𝒔)𝑭𝟏(𝒔)𝒅𝒔 + ∫ 𝒆−𝒄𝒏(𝒕−𝒔)𝑭𝟐(𝒔)𝒅𝑾(𝒔)
𝒕

𝟎

𝒕

𝟎
, 

𝑻𝒏(𝟎) =
𝟐

𝑳
∫ 𝒙[𝝋(𝒙) − 𝜸(𝟎)]𝒔𝒊𝒏

𝒏𝝅𝒙

𝑳
𝒅𝒙

𝑳

𝟎
. Consequently, the stochastic process 𝒗(𝒙, 𝒕) is given by: 

𝒗{𝒙, 𝒕) = 𝒆
−𝝈𝟐𝒕

𝟐 𝑿𝟐(𝒕)𝒗∗(𝒙, 𝒕). 

If 𝜸(𝒕) = 𝟎, we get 𝒗(𝒙, 𝒕) = 𝒆
−𝝈𝟐𝒕

𝟐 𝑿𝟐(𝒕) ∑ 𝒆−𝒄𝒏𝒕𝑻𝒏(𝟎)𝒔𝒊𝒏
𝒏𝝅𝒙

𝑳
∞
𝒏=𝟏  . 

Using our previous results [11-16], we can write: 

𝒖(𝒙, 𝒕) = ∫ 𝜻𝜶(𝜽)𝒗(𝒙, 𝒕𝜶𝜽)𝒅𝜽
∞

𝟎
, where 𝜻𝜶(𝜽) is the stable probability density function. 

Since  𝑬[𝒆𝝈𝑾(𝒕)] = 𝒆
𝝈𝟐

𝟐
𝒕 , it follows that 𝑬[𝒖(𝒙, 𝒕)] =

∑ ∫ 𝜻𝜶(𝜽)
∞

𝟎
𝒆−𝒄𝒏𝒕𝜶𝜽𝒆(𝝔−𝚱)𝒕𝜶𝜽𝑻𝒏(𝟎)𝒔𝒊𝒏

𝒏𝝅𝒙

𝑳
𝒅𝜽∞

𝒏=𝟏 . 

3- A fractional Stochastic Cauchy problem 

We shall solve equation (1.1), for 𝒙𝝐(−∞, ∞) , 𝒕 > 𝟎. 

Let 𝒗 be the solution of the equation: 

𝒅𝒗(𝒙, 𝒕) = 𝒂
𝝏𝟐𝒗(𝒙, 𝒕)

𝝏𝒙𝟐
𝒅𝒕 + (𝝔 − 𝚱)𝒗(𝒙, 𝒕)𝒅𝒕 + 𝝈𝒗(𝒙, 𝒕)𝒅𝑾(𝒕), 𝒗(𝒙, 𝟎) = 𝒙𝝋(𝒙). 

https://icrrd.com/volume-issue/6/2022/3/2
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 Similar to section 2, one gets 

𝐝𝒗∗(𝒙, 𝒕) = 𝒂
𝝏𝟐𝒗∗(𝒙,𝒕)

𝝏𝒙𝟐 𝒅𝒕, where  𝒗∗(𝒙, 𝒕) = 𝒆
𝝈𝟐

𝟐
𝒕𝑿𝟏(𝒕)𝒗(𝒙, 𝒕). 

Consequently the stochastic process 𝒗(𝒙, 𝒕) is given by 

𝒗(𝒙, 𝒕) = ∫ 𝑮(𝒙 − 𝒚, 𝒕)𝒚𝝋(𝒚)𝒅𝒚,

∞

−∞

 

Where 𝑮(𝒙, 𝒕) =
𝟏

√𝟒𝝅𝒂𝒕
𝒆

−𝝈𝟐𝒕

𝟐 𝑿𝟐(𝒕)𝒆
−𝒙𝟐

𝟒𝒂𝒕 . Thus the stochastic process 𝒖(𝒙, 𝒕) is given by: 

𝒖(𝒙, 𝒕) = ∫ ∫ 𝜻𝜶(𝜽)𝑮(𝒙 − 𝒚, 𝒕𝜶𝜽)𝒚𝝋(𝒚)𝒅𝒚𝒅𝜽.

∞

−∞

∞

𝟎

 

It is easy to see that 𝑬[𝒖(𝒙, 𝒕)] = ∫ ∫ 𝜻𝜶(𝜽)𝑮∗(𝒙 − 𝒚, 𝒕𝜶𝜽)𝒚𝝋(𝒚)𝒅𝒚𝒅𝜽
∞

−∞

∞

𝟎
, 

Where 𝑮∗(𝒙, 𝒕) =
𝟏

√𝟒𝝅𝒂𝒕
𝒆

−𝒙𝟐

𝟒𝒂𝒕 𝒆(𝝔−𝚱)𝒕. See [17-24]. 

4- Conclusion 

Some stochastic mathematical models of brain cancer are studied. Fractional stochastic models are 

also considered. We have studied the fractional stochastic Burgess model. The solutions of stochastic 

mixed problem and stochastic Cauchy problem are obtained. 
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